Úvod

Pro obě funkce \sin(x) a \cos(x) platí:

  • definiční obor je množina reálných čísel,
  • obor hodnot je interval \langle -1, 1 \rangle,
  • funkce je omezená,
  • funkce je periodická s periodou 2\pi,
  • funkce není prostá.

Pro funkci \sin(x) platí:

  • je lichá,
  • nulové hodnoty nabývá v bodech x=k\pi.

Pro funkci \cos(x) platí:

  • je suchá,
  • nulové hodnoty nabývá v bodech x=(2k+1)\frac{\pi}{2}.

Pro funkci \tan(x) platí:

  • definiční obor je \{x \in \mathbb{R}: x \neq (2k+1)\frac{\pi}{2} \},
  • obor hodnot je množina reálných čísel,
  • funkce je lichá,
  • funkce je periodická s periodou \pi,
  • funkce je neomezená,
  • nulové hodnoty nabývá v bodech x=k\pi.

Rozhodovačka

Rychlé procvičování výběrem ze dvou možností.

Vlastnosti goniometrických funkcí   


Nechte nám zprávu

Narazili jste na chybu v aplikaci? Máte nápad na vylepšení?

Čeho se zpráva týká?

Obsah Ovládání Přihlášení Licence Různé

Text zprávy

E-mailová adresa (ať Vám můžeme odpovědět)


Prosím nezasílejte dotazy na prozrazení řešení úloh či na vysvětlení postupu.
Aktuální informace: Prosím zasílejte pouze naléhavé dotazy. V souvislosti s uzavřením škol jsou systémy Umíme zahlceny provozem i dotazy. Děkujeme za pochopení.

Odeslat
NAPIŠTE NÁM