Nadřazené | Diskrétní matematika » Množiny » Množiny množin, potenční množina |
Předcházející | Množiny: pojmy a značení, Vlastnosti množin a množinových operací |
Cvičení
Množina prvkem množiny
Prvkem množiny může být i jiná množina. S takovým prvkem pracujeme stejně jako s jinými prvky, jen se nesmíme nechat zmást.
Příklad: Množina M = \{a, \{b, c, d, e\}, \emptyset\} obsahuje tři prvky:
- „obyčejný“ prvek a
- čtyřprvkovou množinu \{b, c, d, e\}
- prázdnou množinu \emptyset
Pozor na rozdíl mezi prázdnou množinou a množinou obsahující prázdnou množinu:
- \emptyset (též můžeme psát \{\}) je prázdná množina, její velikost je 0,
- \{\emptyset\} je množina obsahující prázdnou množinu, její velikost je 1.
Potenční množina
Potenční množina množiny M obsahuje všechny podmnožiny množiny M. Potenční množinu značíme \mathcal{P}(M) (existují i další značení, například 2^M).
Příklad: Pro množinu M = \{a, b, c\} jsou všechny její podmnožiny:
- \{\}
- \{a\}
- \{b\}
- \{c\}
- \{a, b\}
- \{a, c\}
- \{b, c\}
- \{a, b, c\}
Potenční množina je množina všech těchto množin, tj. \mathcal{P}(M)=\{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.
Potenční množina množiny M vždy obsahuje jako svůj prvek samotnou množinu M. Každá potenční množina také obsahuje jako svůj prvek prázdnou množinu.
Rozhodovačka
Rychlé procvičování výběrem ze dvou možností.
Množiny množin, potenční množina (těžké)
27 zadání
Typicky zabere: 5 min
