Umocňování je opakované násobení. Například 3^5 = 3\cdot 3\cdot 3\cdot 3\cdot 3 = 243. Odmocňování je opačnou operací k umocňování. Například druhá odmocnina z 36 je 6 (\sqrt{36}=6), protože 6^2 = 6\cdot 6 = 36. Mocniny a odmocniny využíváme v mnoha oblastech matematiky, například při práci s mnohočleny, řešení kvadratických rovnic, výpočtu obsahu a objemu nebo při určování délek stran v trojúhelníku.

Prvním krokem pro zvládnutí tohoto tématu jsou základní mocniny a odmocniny, kde pracujeme s malými, přirozenými čísly. Pro tato čísla se vyplatí se naučit základní mocniny a odmocniny zpaměti, protože na ně často v matematice narazíme.

Jako další krok potřebujeme zvládnout pracovat s výrazy s mocninami a odmocninami.

Umocňování je možné definovat i pro záporný mocnitel. Tento způsob umocňování se využívá pro vědecký zápis čísel, který nám umožňuje přehledně pracovat s velmi velkými či velmi malými čísly, díky čemuž má hojné využití ve fyzice.

Umocňování a odmocňování můžeme přirozeně používat i ve spojitosti se zlomky a desetinnými čísly.


    

Přesouvání

Přesouvání kartiček na správné místo. Jednoduché ovládání, zajímavé a neotřelé úlohy.


Mocniny a odmocniny
Mocniny   


NAPIŠTE NÁM

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Časté dotazy Návody pro rodiče Návody pro učitele

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence