Odmocňování v matematice je částečně inverzní (opačnou) operací k umocňování. Druhá odmocnina z čísla x je takové nezáporné číslo a, pro které platí a^2 = x. Druhou odmocninu značíme \sqrt{x}. Příklady:

  • \sqrt{9} = 3, protože 3^2 = 9
  • \sqrt{25} = 5, protože 5^2 = 25
  • \sqrt{100} = 10, protože 10^2 = 100

Obecně pak n-tá odmocnina z x je takové číslo a, pro které platí a^n = x, n-tou odmocninu značíme \sqrt[n]{x}. Příklady:

  • \sqrt[3]{125} = 5, protože 5^3 = 25
  • \sqrt[5]{32} = 2, protože 2^5 = 32
  • \sqrt[4]{10000} = 10, protože 10^4 = 10000

Odmocňování má i geometrický význam. Pokud máme čtverec o obsahu S, pak tento čtverec má délku strany rovnou druhé odmocnině \sqrt{S}. Pokud máme krychli o objemu V, pak tato krychle má délku hranu rovnou třetí odmocnině \sqrt[3]{V}. Odmocniny hojně využijeme například při aplikaci Pythagorovy věty.

Odmocnina a záporná čísla

Když hledáme odmocninu třeba z 25, tak hledáme číslo, které po umocnění dá 25. To splňuje 5\cdot 5, ale také (-5)\cdot (-5). Odmocnina je však definována jako nezáporné číslo, takže \sqrt{25} = 5.

Druhou odmocninu můžeme počítat pouze z kladných čísel, protože jakékoliv číslo umocněné na druhou je kladné. Odmocnina ze záporných čísel není definována. Nebo vlastně je, ale to musíme zavést komplexní čísla (což je velice zajímavý a užitečný nástroj, ale trochu pokročilý a ten tu nebudeme rozebírat).

Pro běžná reálná čísla můžeme počítat odmocniny za záporných čísel pro liché stupně n. Například:

  • \sqrt[3]{-8} = -2, protože (-2)^3 = -8
  • \sqrt[4]{-10000} = -10, protože (-10)^4 = -10000

Rozhodovačka

Rychlé procvičování výběrem ze dvou možností.


Odmocniny   


Pexeso

Hledání dvojic, které k sobě patří.


Odmocniny   


Počítání

Cvičení, ve kterém píšete odpověď na klávesnici.


Odmocniny   


NAPIŠTE NÁM

Čeho se zpráva týká?

Obsah Ovládání Přihlášení Licence Různé

Text zprávy

E-mailová adresa


Prosím nezasílejte dotazy na prozrazení řešení úloh či na vysvětlení postupu.

Odeslat