Kvantifikátory


Nadřazené: Logika

Předcházející: Vyhodnocování logických výrazů

Navazující: Důkazy

Cvičení

Rozhodovačka

Kvantifikátory

Značení Pojem Význam
\exists x existenční kvantifikátor existuje x, takové že...
\forall x obecný (univerzální) kvantifikátor pro každé x platí...

Příklady výroků s kvantifikátory

Vlastnost Číslo x je sudé. můžeme vyjádřit jako Existuje celé číslo k takové, že x = 2\cdot k. To můžeme zapsat jako \exists k \in \mathbb{Z}: x = 2\cdot k.

Výrok Ponorky (P) nemohou létat (L). můžeme zapsat jako \forall x: P(x) \Rightarrow \neg L(x).

U složitejších výroků s více kvantifikátory musíme dávat na pořadí kvantifikátorů:

  • \exists x\in M\ \forall y \in M: y \leq x – existuje prvek v množině M, který je větší roven všem ostatním prvkům v M, tj. výrok říká, že množina má největší prvek.
  • \forall x\in M\ \exists y \in M: y \leq x – pro každý prvek v množině M existuje prvek x, který je menší nebo roven X. Protože klidně můžeme vybrat y=x, je to splněno pro každou množinu (pro pokročilé: tedy pouze pokud uvažujeme množiny čísel a \leq jako běžné uspořádání na číslech).

Negace výroků s kvantifikátory

Při negování výroků s kvantifikátory měníme existenční kvantifikátor na obecný (a naopak) a posouváme negaci „dovnitř“. Příklad:

  • Není pravda, že všechny kočky (K) jsou černé (C).
  • \neg (\forall x: K(x) \Rightarrow C(x))
  • Změníme obecný kvantifikátor na existenční a znegujeme výrok.
  • \exists x: \neg(K(x) \Rightarrow C(x))
  • Nyní znegujeme implikaci pomocí pravidla \neg(A \Rightarrow B) \Leftrightarrow (A \wedge \neg B).
  • \exists x: K(x) \wedge \neg C(x)
  • Existuje kočka, která není černá.


Vysvětlení mi pomohlo   Vysvětlení mi nepomohlo

Rozhodovačka

Rychlé procvičování výběrem ze dvou možností.


Kvantifikátory   


NAPIŠTE NÁM

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Časté dotazy Návody pro rodiče Návody pro učitele

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence