Je to moc těžké? Zkuste nejprve tato cvičení:

Největší společný dělitel

Rozhodovačka: 2. úroveň

umime.to/FN9


Stáhnout QR kód

Největší společný dělitel

Největší společný dělitel (NSD) dvou celých čísel je největší číslo, které beze zbytku dělí obě čísla. Příklady: NSD(18, 24) = 6, NSD(12, 21) = 3, NSD(24, 35) = 1. Pojem největšího společného dělitele lze zobecnit i na větší počet vstupních čísel. Například NSD(30, 85, 90) = 5. Typickým využitím největšího společného dělitele je krácení zlomků. Pokud největší společný dělitel dvou čísel je 1, nazýváme je nesoudělná. Například čísla 15 a 32 jsou nesoudělná.

Pro malá čísla můžeme největšího společného dělitele určit tak, že si prostě vypíšeme všechny dělitele. Pokud hledáme NSD(18, 24) postupujeme takto:

  • Dělitelé čísla 18 jsou 1, 2, 3, 6, 9, 18.
  • Dělitelé čísla 24 jsou 1, 2, 3, 4, 6, 8, 12, 24.
  • Společní dělitelé čísel 18 a 24 jsou 1, 2, 3, 6.
  • Největší společný dělitel je 6.

Pro větší čísla můžeme největšího společného dělitele určit pomocí prvočíselného rozkladu. Obě čísla rozepíšeme jako součin prvočísel, výsledný NSD je součin prvočísel vyskytujících se v obou rozkladech umocněných na příslušné nejmenší exponenty.

  • Příklad \mathit{NSD}(18, 24):
    • 18 = 2\cdot 3 \cdot 3 = 2\cdot3^2
    • 24 = 2 \cdot 2 \cdot 2\cdot 3 = 2^3\cdot 3
    • Společná část prvočíselného rozkladu: 2, 3.
    • \mathit{NSD}(90, 168) = 2\cdot 3 = 6
  • Příklad \mathit{NSD}(540, 315):
    • 540 = 2\cdot 2\cdot3\cdot 3\cdot 3\cdot 5 = 2^2\cdot3^3\cdot 5
    • 315 = 3\cdot 3 \cdot 5\cdot 7 = 3^2 \cdot 5\cdot 7
    • Společná část prvočíselného rozkladu: 3, 3, 5
    • \mathit{NSD}(540, 315) = 3\cdot 3\cdot 5 = 3^2\cdot 5 = 45

Pro praktické výpočty se používají jiné algoritmy, především Euklidův algoritmus.

Zavřít

Největší společný dělitel (střední)

Vyřešeno:



NAPIŠTE NÁM

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Časté dotazy Návody pro rodiče Návody pro učitele

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence