Vzdálenost bodů v rovině

GJW
Zkopírovat krátkou adresu (umime.to/GJW)
Ukázat QR kód

umime.to/GJW


Stáhnout QR kód

Vzdálenost dvou bodů v rovině můžeme spočítat, když známe jejich souřadnice.

Jsou‑li dány souřadnice A=[a_x,a_y], B=[b_x,b_y], je vzdálenost bodu A od bodu B:

|AB| = \sqrt{(b_x-a_x)^2 + (b_y-a_y)^2}

Vzoreček vychází z Pythagorovy věty. Všimněme si pravoúhlého trojúhelníku s délkami odvěsen (b_x-a_x) a (b_y-a_y), jehož přepona má délku |AB|.

Příklad: vzdálenost C[0;1],D[4;4]

  • |CD| = \sqrt{(d_x-c_x)^2 + (d_y-c_y)^2}
  • Dosadíme souřadnice bodů C[0;1] a D[4;4]:
    \sqrt{(4-0)^2 + (4-1)^2}=\sqrt{4^2 + 3^2}=\sqrt{25}=5
  • Vzdálenost je: |CD|=5

Příklad: vzdálenost M[2;-1], N[-1;-2]

  • |MN| = \sqrt{(n_x-m_x)^2 + (n_y-m_y)^2}
  • Dosadíme souřadnice bodů M[2;-1] a N[-1;-2]:
    \sqrt{(-1-2)^2 + (-2-(-1))^2}=\sqrt{(-3)^2 + (-1)^2}=\sqrt{10}
  • Vzdálenost je: |MN|=\sqrt{10}
Souhrn mi pomohl
Souhrn mi nepomohl
Souhrn je skryt.

Přesouvání

Přesouvání kartiček na správné místo. Jednoduché ovládání, zajímavé a neotřelé úlohy.


Vzdálenost bodů v rovině  
Zobrazit souhrn tématu


Rozhodovačka

Rychlé procvičování výběrem ze dvou možností.


Vzdálenost bodů v rovině  
Zobrazit souhrn tématu


Krok po kroku

Doplňování jednotlivých kroků v rozsáhlejším postupu.


Vzdálenost bodů v rovině  
Zobrazit souhrn tématu


Psaná odpověď

Cvičení, ve kterém píšete odpověď na klávesnici.


Vzdálenost bodů v rovině  
Zobrazit souhrn tématu


NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence