Umíme matiku

Permutace, kombinace, variace – 2. třída (2. ročník)

F1W
Zkopírovat krátkou adresu (umime.to/F1W)
Ukázat QR kód

umime.to/F1W


Stáhnout QR kód

Pojmy

  • Permutace je uspořádání prvků do fixního pořadí.
  • Kombinace (k prvková) je výběr k prvků ze zadané množiny.
  • Kombinace s opakováním (k prvková) je výběr k prvků ze zadané množiny, přičemž prvky se mohou opakovat.
  • Variace (k prvková) je uspořádaný výběr k prvků ze zadané množiny.
  • Variace s opakováním (k prvková) je uspořádaný výběr k prvků ze zadané množiny, přičemž prvky se mohou opakovat.

Příklady

permutace \{A, B, C\} ABC, ACB, BAC, BCA, CAB, CBA
kombinace \{A, B, C, D\}; k=2 AB, AC, AD, BC, BD, CD
kombinace s opakováním \{A, B, C, D\}; k=2 AA, AB, AC, AD, BB, BC, BD, CC, CD, DD
variace \{A, B, C, D\}; k=2 AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC
variace s opakováním \{A, B, C\}; k=2 AA, AB, AC, BA, BB, BC, CA, CB, CC

Vzorce

Počty permutací, kombinací a variací udává následující tabulka:

počet všech permutací n prvků n!
počet všech k prvkových kombinací z n prvků \binom{n}{k} = \frac{n!}{(n-k)!k!}
počet všech k prvkových kombinací s opakováním z n prvků \binom{n + k - 1}{k}
počet všech k prvkových variací z n prvků \frac{n!}{(n-k)!}
počet všech k prvkových variací s opakováním z n prvků n^k

Komiks pro zpestření

Souhrn mi pomohl
Souhrn mi nepomohl
Pro toto téma zatím není dostupné žádné procvičování.
NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence