umime.to/F9F


Stáhnout QR kód

Rovnice s lomenými výrazy

Rovnice s lomenými výrazy řešíme stejnými postupy jako základní rovnice.

Užitečným (avšak ne vždy nezbytným) prvním krokem bývá roznásobení obou stran rovnice společným násobkem všech jmenovatelů lomených výrazů.

Podmínky řešitelnosti

Aby lomený výraz dával smysl, nesmí být jmenovatel roven nule. Po vyřešení rovnice tedy musíme zkontrolovat, že výsledné řešení tuto podmínku splňuje pro všechny jmenovatele v rovnici.

Řešený příklad

Zadání: \frac{-1}{2} = \frac{x+1}{1-x}
Jmenovatelé jsou 2 a 1-x, společný násobek je 2(1-x). Roznásobíme tedy rovnici 2(1-x). \frac{-1}{2}\cdot 2(1-x) = \frac{x+1}{1-x} \cdot 2(1-x)
Pokrátíme obě strany. (-1)\cdot (1-x) = (x+1)\cdot 2
Roznásobíme obě strany. x-1 = 2x +2
Převedeme x na jednu stranu, konstanty na druhou. x = -3
Zavřít

Rovnice s lomenými výrazy (lehké)

Vyřešeno:



NAPIŠTE NÁM

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Časté dotazy Návody pro učitele

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence