Rovnice – 5. třída (5. ročník)

FWL
Zkopírovat krátkou adresu (umime.to/FWL)
Ukázat QR kód

umime.to/FWL


Stáhnout QR kód
Ukázat/skrýt shrnutí

Rovnice s neznámou x je zápis ve tvaru L(x) = P(x), kde L(x), P(x) jsou výrazy s proměnnou x. L(x) je levá strana rovnice, P(x) je pravá strana rovnice. Řešit rovnici znamená najít všechny hodnoty proměnné x, pro které výrazy L(x) a P(x) nabývají stejné hodnoty. Tato čísla nazýváme kořeny rovnice. Výpočet hodnot L(x) a P(x) pro konkrétní x se nazývá zkouška.

Příklad: 2x-7 = 5-4x

levá strana L(x) = 2x - 7
pravá strana P(x) = 5-4x
kořen (řešení) rovnice x=2
zkouška L(x) = 2x-7 = 2\cdot 2 - 7= -3
P(x) = 5-4x = 5 - 4\cdot 2 = -3

Řešení rovnic

Rovnice řešíme ekvivalentními úpravami, což jsou úpravy, které nemění množinu kořenů rovnice. Mezi takové úpravy patří například:

  • výměna levé a pravé strany rovnice,
  • přičtení nebo odečtení stejného výrazu k oběma stranám rovnice,
  • vynásobení nebo vydělení obou stran rovnice nenulovým číslem.

Řešený příklad: 7x-1=4x+20

Od obou stran rovnice odečteme 4x. 7x-1-4x=4x+20-4x
3x - 1 = 20
K oběma stranám rovnice přičteme 1. 3x - 1 + 1 = 20 + 1
3x = 21
Obě strany rovnice vydělíme číslem 3. 3x : 3 = 21 : 3
x = 7
Řešení rovnice je x=7.

Typy rovnic

Základní lineární rovnice obsahují pouze konstanty a násobky proměnné. Pro důkladné procvičení je v rámci Umíme dělíme do několika skupin:

skupina rovnic příklad
Jednokrokové rovnice x + 2 = 5
Základní rovnice s jednou neznámou 2x - 7 = 5 -4x
Rovnice se závorkami 2(x+3) = 12 -x
Rovnice se zlomky \frac{x}{2} - \frac{x}{3} = 2
Rovnice s neznámou ve jmenovateli \frac{20}{x} + 2 = 7
Rovnice s desetinnými čísly 0{,}2x = 4{,}6 - 2{,}1x

Další typy rovnic jsou pak uvedeny v sekci Pokročilé rovnice, jde například o rovnice s lomenými výrazy, soustavy dvou rovnic, kvadratické rovnice, exponenciální rovnice a logaritmické rovnice.

Souhrn mi pomohl
Souhrn mi nepomohl
Souhrn je skryt.
Pro toto téma zatím není dostupné žádné procvičování.
NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence