Umíme matiku

Výpis souhrnů

Grafy logaritmických funkcí

Prohlížíte si souhrny informací k určitým tématům. Systémy Umíme se zaměřují hlavně na jejich procvičování. Ke cvičením k jednotlivým podtématům se dostanete pomocí odkazů níže.

« Zpět na procvičování

Podtémata

Grafy logaritmických funkcí

Přejít ke cvičením na toto téma »

Logaritmická funkce je inverzní k exponenciální funkci o stejném základu. Grafy dvou navzájem inverzních funkcí jsou osově souměrné podle osy prvního kvadrantu (tj. přímky splňující x=y).

Graf každé logaritmické funkce tvaru y=\log_a x prochází bodem [1,0], protože pro libovolnou konstantu a platí: \log_a 1=0. Na obrázku vidíme grafy logaritmických funkcí s různými základy 2, e, 10.

Značení některých význačných logaritmických funkcí:

funkce popis další možná značení
\log_a x obecně logaritmus x o základu a pro nějaké a >0, a\neq 1
\ln x přirozený logaritmus x, tj. logaritmus x o základu e v angl. textech někdy \log x
\log x dekadický logaritmus x, tj. logaritmus x o základu 10 \log_{10}x
\log_2 x binární logaritmus x, tj. logaritmus x o základu 2 někdy se objevuje \mathrm{lb}\;x
Efekt přičtení konstanty k logaritmické funkci
Efekt přičtení konstanty k argumentu logaritmické funkce
Efekt vynásobení logaritmické funkce konstantou
Efekt vynásobení argumentu logaritmické funkce konstantou
Nahoru
NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence