Výpis souhrnů

Grafy funkcí

Prohlížíte si souhrny informací k určitým tématům. Systémy Umíme se zaměřují hlavně na jejich procvičování. Ke cvičením k jednotlivým podtématům se dostanete pomocí odkazů níže.

« Zpět na procvičování

Podtémata

Grafy lineárních funkcí

Přejít ke cvičením na toto téma »

Lineární funkci můžeme vždy zapsat ve tvaru f(x) = a\cdot x + b, kde a a b jsou konstanty. Parametr a je směrnice (též nazývaná sklon), parametr b je absolutní člen. Grafem lineární funkce je přímka, přičemž platí:

  • Absolutní člen b udává „svislý posun“. Je to průsečík přímky s osou y. V uvedených příkladech je vyznačen oranžovou barvou.
  • Směrnice a udává sklon přímky, což můžeme vyjádřit jako „o kolik jednotek na ose y se přímka posune za jednu jednotku na ose x“. V uvedených příkladech je směrnice vyznačena žlutou barvou.

Důležitá jsou znamínka (naznačená v obrázcích šipkami). Kladný absolutní člen znamená posun nahoru, záporný absolutní člen znamená posun dolů. Kladná směrnice znamená stoupající přímku, záporná směrnice znamená klesající přímku.

Pracovní list

Kromě interaktivního procvičování je k dispozici také pracovní list pro tisk:

Nahoru

Grafy kvadratických funkcí

Přejít ke cvičením na toto téma »

Kvadratickou funkci lze vyjádřit ve tvaru f(x) = ax^2 + bx + c, kde a\neq 0. Grafem kvadratické funkce je parabola. Tento graf zobrazuje funkci 0{,}5 x^2 + x - 4:

Průsečíky s osou x jsou řešení kvadratické rovnice ax^2 + bx + c = 0. Pro výše uvedený příklad 0{,}5 x^2 + x - 4 jsou těmito řešeními x_1 = -4 a x_2 = 2.

Kvadratický koeficient a ovlivňuje základní podobu paraboly:

  • Pokud je a>0, „směřuje parabola nahoru“ (přesněji: je to zdola omezená, konvexní funkce).
  • Pokud je a<0, „směřuje parabola dolů“ (přesněji: je to shora omezená, konkávní funkce).
  • Velikost kvadratického koeficientu a ovlivňuje, jak je parabola „široká“.

Konstantní člen c ovlivňuje posun paraboly – udává průsečík s osou y.

Komiks pro zpestření

Nahoru

Grafy goniometrických funkcí

Přejít ke cvičením na toto téma »

Grafy základních goniometrických funkcí

Dopad úprav funkce na graf

Obrázek ukazuje grafy několika úprav funkce \sin(x).

\sin(x+1) graf má posunutou fázi (posun ve směru osy x)
\sin(x)+1 graf je posunutý ve směru osy y
\sin(2x) funkce má změněnou délku periody
2\sin(x) funkce má změněnou velikost amplitudy
Nahoru

Grafy exponenciálních a logaritmických funkcí

Přejít ke cvičením na toto téma »

Grafy exponenciálních funkcí

Grafem exponenciální funkce je křivka jménem exponenciála. Na obrázku jsou grafy exponenciálních funkcí se základy 2 a e = 2{,}7 182 818 284\ldots. Vidíme také, že grafy funkcí e^x a e^{-x} jsou spolu souměrné podle osy y.

Efekt přičtení konstanty k exponenciální funkci
Efekt přičtení konstanty k exponentu
Efekt vynásobení exponenciální funkce konstantou
Efekt vynásobení exponentu konstantou

Grafy logaritmických funkcí

Logaritmická funkce je inverzní k exponenciální funkci o stejném základu. Grafy dvou navzájem inverzních funkcí jsou osově souměrné podle osy prvního kvadrantu (tj. přímky splňující x=y).

Na obrázku vidíme grafy logaritmických funkcí s různými základy 2, e, 10.

Značení některých význačných logaritmických funkcí:

funkce popis další možná značení
\log_a x obecně logaritmus x o základu a pro nějaké a >0, a\neq 1
\ln x přirozený logaritmus x, tj. logaritmus x o základu e v angl. textech někdy \log x
\log x dekadický logaritmus x, tj. logaritmus x o základu 10 \log_{10}x
\log_2 x binární logaritmus x, tj. logaritmus x o základu 2 někdy se objevuje \mathrm{lb}\;x
Efekt přičtení konstanty k logaritmické funkci
Efekt přičtení konstanty k argumentu logaritmické funkce
Efekt vynásobení logaritmické funkce konstantou
Efekt vynásobení argumentu logaritmické funkce konstantou
Nahoru

Souřadnice bodů v rovině

Přejít ke cvičením na toto téma »

Souřadnice bodů většinou zapisujeme pomocí kartézské soustavy souřadnic v rovině, která má jako osy dvě kolmé přímky. Vodorovná přímka se tradičně označuje x a souřadnice podél této osy se zapisuje první. Svislá přímka se tradičně označuje y a souřadnice podle této osy se zapisuje druhá. Přímky x, y se protínají v bodě [0;0].

Přímky x a y jsou souřadné osy, bod [0;0] je počátek soustavy souřadnic.

Příklad: Souřadnice bodu A

Bod A na obrázku je v dané soustavě souřadnic určen jako x=1, y=2, což můžeme zapsat jako A[1;2].

Další příklady souřadnic bodů
Nahoru
NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence