Výpis souhrnů
Grafy funkcí
Prohlížíte si souhrny informací k určitým tématům. Systémy Umíme se zaměřují hlavně na jejich procvičování. Ke cvičením k jednotlivým podtématům se dostanete pomocí odkazů níže.
Podkapitoly
Grafy lineárních funkcí
Lineární funkci můžeme vždy zapsat ve tvaru f(x) = a\cdot x + b, kde a a b jsou konstanty. Parametr a je směrnice (též nazývaná sklon), parametr b je absolutní člen. Grafem lineární funkce je přímka, přičemž platí:
- Absolutní člen b udává „svislý posun“. Je to průsečík přímky s osou y. V uvedených příkladech je vyznačen oranžovou barvou.
- Směrnice a udává sklon přímky, což můžeme vyjádřit jako „o kolik jednotek na ose y se přímka posune za jednu jednotku na ose x“. V uvedených příkladech je směrnice vyznačena žlutou barvou.
Důležitá jsou znamínka (naznačená v obrázcích šipkami). Kladný absolutní člen znamená posun nahoru, záporný absolutní člen znamená posun dolů. Kladná směrnice znamená stoupající přímku, záporná směrnice znamená klesající přímku.
Grafy kvadratických funkcí
Kvadratickou funkci lze vyjádřit ve tvaru f(x) = ax^2 + bx + c, kde a\neq 0. Grafem kvadratické funkce je parabola. Tento graf zobrazuje funkci 0{,}5 x^2 + x - 4:
Průsečíky s osou x jsou řešení kvadratické rovnice ax^2 + bx + c = 0. Pro výše uvedený příklad 0{,}5 x^2 + x - 4 jsou těmito řešeními x_1 = -4 a x_2 = 2.
Kvadratický koeficient a ovlivňuje základní podobu paraboly:
- Pokud je a>0, „směřuje parabola nahoru“ (přesněji: je to zdola omezená, konvexní funkce).
- Pokud je a<0, „směřuje parabola dolů“ (přesněji: je to shora omezená, konkávní funkce).
- Velikost kvadratického koeficientu a ovlivňuje, jak je parabola „široká“.
Konstantní člen c ovlivňuje posun paraboly – udává průsečík s osou y.
Komiks pro zpestření
Grafy goniometrických funkcí
Grafy základních goniometrických funkcí
Dopad úprav funkce na graf
Obrázek ukazuje grafy několika úprav funkce \sin(x).
\sin(x+1) | graf má posunutou fázi (posun ve směru osy x) |
\sin(x)+1 | graf je posunutý ve směru osy y |
\sin(2x) | funkce má změněnou délku periody |
2\sin(x) | funkce má změněnou velikost amplitudy |
Grafy exponenciálních a logaritmických funkcí
Grafy exponenciálních funkcí
Grafem exponenciální funkce je křivka jménem exponenciála. Na obrázku jsou grafy exponenciálních funkcí se základy 2 a e = 2{,}7 182 818 284\ldots. Vidíme také, že grafy funkcí e^x a e^{-x} jsou spolu souměrné podle osy y.
Efekt přičtení konstanty k exponenciální funkci
Efekt přičtení konstanty k exponentu
Efekt vynásobení exponenciální funkce konstantou
Efekt vynásobení exponentu konstantou
Grafy logaritmických funkcí
Logaritmická funkce je inverzní k exponenciální funkci o stejném základu. Grafy dvou navzájem inverzních funkcí jsou osově souměrné podle osy prvního kvadrantu (tj. přímky splňující x=y).
Na obrázku vidíme grafy logaritmických funkcí s různými základy 2, e, 10.
Značení některých význačných logaritmických funkcí:
funkce | popis | další možná značení |
---|---|---|
\log_a x | obecně logaritmus x o základu a pro nějaké a >0, a\neq 1 | |
\ln x | přirozený logaritmus x, tj. logaritmus x o základu e | v angl. textech někdy \log x |
\log x | dekadický logaritmus x, tj. logaritmus x o základu 10 | \log_{10}x |
\log_2 x | binární logaritmus x, tj. logaritmus x o základu 2 | někdy se objevuje \mathrm{lb}\;x |
Efekt přičtení konstanty k logaritmické funkci
Efekt přičtení konstanty k argumentu logaritmické funkce
Efekt vynásobení logaritmické funkce konstantou
Efekt vynásobení argumentu logaritmické funkce konstantou
Souřadnice bodů v rovině
Souřadnice bodů většinou zapisujeme pomocí kartézské soustavy souřadnic v rovině, která má jako osy dvě kolmé přímky. Vodorovná přímka se tradičně označuje x a souřadnice podél této osy se zapisuje první. Svislá přímka se tradičně označuje y a souřadnice podle této osy se zapisuje druhá. Přímky x, y se protínají v bodě [0;0].
Přímky x a y jsou souřadné osy, bod [0;0] je počátek soustavy souřadnic.
Příklad: Souřadnice bodu A
Bod A na obrázku je v dané soustavě souřadnic určen jako x=1, y=2, což můžeme zapsat jako A[1;2].