Umíme matiku
Děkujeme za vaše hodnocení.

Obecná rovnice přímky v rovině – 8. třída (8. ročník)

GMR
Zkopírovat krátkou adresu (umime.to/GMR)
Ukázat QR kód

umime.to/GMR


Stáhnout QR kód

Obecná rovnice přímky v rovině má tvar: ax+by+c=0, kde konstanty a a b jsou souřadnice normálového vektoru a c reálné číslo. Normálový vektor \vec{n}=(a;b) je vektor kolmý k dané přímce, tedy i kolmý ke směrovému vektoru přímky.

Obecná rovnice přímky p určené body A=[1;5] a B=[2;3]

  • Přímka p je určená bodem A a směrovým vektorem \vec{u}=\overrightarrow{AB}=B-A=(1;-2).
  • Normálový vektor je kolmý k vektoru \vec{u}=(1;-2), tedy například vektor \vec{n}=(2;1).
  • Souřadnice normálového vektoru jsou konstanty a a b v obecné rovnici přímky. Obecná rovnice má tvar: 2x+y+c=0
  • Konstantu c dopočítáme dosazením souřadnic bodu A=[1;5] :
  • 2\cdot1+5+c=0\Rightarrow c=-7
  • Obecná rovnice přímky p je: 2x+y-7=0

Obecná rovnice přímky dané parametricky

Určete obecnou rovnici přímky p, která je dána následující parametrickou soustavou rovnic: \begin{array}{rrl}x&=&1+2t\\y&=&4+6t\\&&t\in\mathbb{R}\end{array}

  • Přímka p je určená bodem A=[1;4] a směrovým vektorem \vec{u}=(2;6).
  • Souřadnice směrového vektoru můžeme upravit na tvar: \vec{u}=(1;3).
  • Normálový vektor je kolmý k vektoru \vec{u}=(1;3), tedy například vektor \vec{n}=(3;-1).
  • Souřadnice normálového vektoru jsou konstanty a a b v obecné rovnici přímky. Obecná rovnice má tvar: 3x-y+c=0
  • Konstantu c dopočítáme dosazením souřadnic bodu A=[1;4] :
  • 3\cdot1-4+c=0\Rightarrow c=1
  • Obecná rovnice přímky p je: 3x-y+1=0

Parametrické vyjádření přímky dané obecnou rovnicí

Určete parametrické vyjádření přímky p, která má obecnou rovnici: 3x-2y+4=0.

  • Přímka p má normálový vektor \vec{n}=(3;-2).
  • Směrový vektor je kolmý k vektoru \vec{n}=(3;-2), tedy například vektor \vec{u}=(2;3).
  • Určíme jeden bod na přímce p : jednu souřadnici můžeme zvolit, například x=0, druhou souřadnici dopočítáme: 3\cdot0-2y+4=0\Rightarrow y=2
  • Z obecné rovnice jsme tedy zjistili, že na přímce leží bod A=[0;2].
  • Parametrické vyjádření přímky p je: \begin{array}{rrl}x&=&0+2t\\y&=&2+3t\\&&t\in\mathbb{R}\end{array}
Souhrn mi pomohl
Souhrn mi nepomohl
Pro toto téma zatím není dostupné žádné procvičování.
NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence