Příprava na přijímací zkoušky na šestiletá gymnázia, matematika

Zpět na rozcestník k přípravě na přijímací zkoušky

Procvičování v Umíme doporučujeme kombinovat s řešením testových zadání z předchozích let. Zadání v Umíme jsou vhodná především pro přípravu a učení, testová zadání pak pro seznámení s formální podobou testů.

Uvedený výběr témat k procvičování pokrývá všechny oblasti uvedené v oficiální specifikaci požadavků k jednotné přijímací zkoušce. Systém Umíme nabízí velmi bohaté možnosti procvičování a uvedený výběr zdaleka nezmiňuje všechny dostupné možnosti. Tato stránka uvádí pouze výběr cvičení, která jsou nejvíce užitečná pro přípravu na přijímací zkoušky. Při výběru bylo zohledněno mimo jiné i to, jaké úlohy byly používané v přijímacích zkouškách v minulých letech.

Pokud budete potřebovat k některému tématu důkladnější procvičení, můžete najít další cvičení skrze vyhledávání názvu tématu. Systém vám bude také automaticky doporučovat další návaznosti. Lze také použít kompletní výpis témat pro 7. ročník.

Následující tabulka uvádí časový odhad při pravidelném procvičování 15 minut denně.

Varianta procvičováníRozsah výpisuKomentářČasový rozsah procvičování
Základní69 sadZákladní procvičování, které má smysl si určitě projít pro osvěžení všech témat, která se ve zkouškách vyskytují.měsíc
S rozcvičením90 sadZákladní procvičování rozšířené o přípravná cvičení zaměřená na témata, která často dělají problémy.2–3 měsíce
S bonusem96 sadZákladní procvičení rozšířené o náročnější cvičení, která pomohou s průpravou i na náročnější příklady ze zkoušek.2–3 měsíce
Důkladné117 sadKombinace předchozího, tj. od přípravných cvičení až po bonusy.3 a více měsíců
  1. Dělitelnost
  2. Zlomky a desetinná čísla
  3. Procenta
  4. Poměry, přímá a nepřímá úměra
  5. Geometrie: pojmy, útvary
  6. Osová a středová souměrnost
  7. Obsah, obvod, objem, povrch
  8. Úhly
  9. Konstrukční úlohy
  10. Nestandardní úlohy

1. Dělitelnost

Důkladné zvládnutí dělitelnosti je důležité, protože se využívá i v dalších tématech (zlomky, poměry).

RozhodovačkaPodmínky dělitelnosti
RozhodovačkaPrvočísla
Krok po krokuNejvětší společný dělitel
PexesoNejvětší společný dělitel
Psaná odpověďNejvětší společný dělitel
Krok po krokuNejmenší společný násobek
PexesoNejmenší společný násobek
Psaná odpověďNejmenší společný násobek
PřesouváníDělitelnost a Vennův diagram
PřesouváníKřížovka dělitelnosti

2. Zlomky a desetinná čísla

Použití zlomků a desetinných čísel se může vyskytovat v samostatných úlohách i jako součást větších příkladů (např. slovních úloh).

RozhodovačkaPorovnávání zlomků
RozhodovačkaPorovnávání zlomků
PřesouváníPorovnávání zlomků
PřesouváníKrácení zlomků
PřesouváníKrácení zlomků
RozhodovačkaKrácení zlomků
PexesoKrácení zlomků
PexesoSmíšená čísla
Psaná odpověďSmíšená čísla
PřesouváníZlomky na číselné ose
RozhodovačkaPorovnávání zlomků
Krok po krokuVýpočty se zlomky
Psaná odpověďVýpočty se zlomky
Psaná odpověďZlomky: mix
Slovní úlohyZlomky: mix
Slovní úlohyZlomky: mix
Slovní úlohyZlomky: mix
PřesouváníZlomky a desetinná čísla
PřesouváníDesetinná čísla na číselné ose
PřesouváníDesetinná čísla na číselné ose
Psaná odpověďSčítání a odčítání desetinných čísel
Psaná odpověďSčítání a odčítání desetinných čísel
RozhodovačkaDesetinná čísla: mix
Slovní úlohyDesetinná čísla: mix

3. Procenta

Procenta se často vyskytují v rámci slovních úloh. Přirozeně se využívají například u úloh s finanční tematikou, což je také jedno z témat vyskytujících se ve zkouškách.

PřesouváníProcenta: poznávání
PřesouváníProcenta: poznávání
RozhodovačkaOdhady procent – tečky
PexesoPočítání s procenty
PexesoZlomky a procenta
RozhodovačkaPřibližné počítání s procenty
Krok po krokuPočítání s procenty
Psaná odpověďPočítání s procenty
Slovní úlohyProcenta: mix
Slovní úlohyProcenta: mix
Slovní úlohyProcenta: mix

4. Poměry, přímá a nepřímá úměra

Poměry a úměrnosti patří mezi typická témata u zkoušek na šestiletá gymnázia, používají se v samostatných příkladech i v úlohách na práci s daty.

RozhodovačkaTrojčlenka
RozhodovačkaPřímá a nepřímá úměrnost
Krok po krokuPřímá a nepřímá úměrnost
Slovní úlohyPřímá a nepřímá úměrnost
PřesouváníPoměry: základy
RozhodovačkaPoměry: změna a rozdělení čísla
Krok po krokuPoměry: výpočty
Psaná odpověďPoměry: výpočty
RozhodovačkaPoměry: výpočty
Psaná odpověďPoměry: změna a rozdělení čísla
Krok po krokuPoměry: měřítko mapy
Psaná odpověďPoměry: měřítko mapy
Slovní úlohyPoměry: výpočty

5. Geometrie: pojmy, útvary

Další skupina témat se týká geometrie. Základem je znalost jednotlivých útvarů a souvisejících pojmů.

RozhodovačkaNázvy geometrických útvarů a těles
PexesoNázvy geometrických útvarů a těles
RozhodovačkaPojmy související s trojúhelníkem
RozhodovačkaPojmy: velikost úhlů
RozhodovačkaPojmy: dvojice úhlů
PřesouváníGeometrické pojmy: mix
PexesoGeometrické pojmy: mix

6. Osová a středová souměrnost

Osovou a středovou souměrnost je dobré nepodcenit. Základní princip je jednoduchý, ale člověk se u těchto operací snadno splete a je dobré si o nich vytvořit opravdu dobrou představu.

PřesouváníOsová souměrnost
PřesouváníOsová souměrnost
PřesouváníStředová souměrnost
MřížkovanáOsová souměrnost Úlohy
MřížkovanáOsová souměrnost těžší Úlohy
MřížkovanáStředová souměrnost Úlohy
MřížkovanáStředová souměrnost těžší Úlohy

7. Obsah, obvod, objem, povrch

Mezi typické zkouškové úlohy patří výpočty obvodu a obsahu. Z prostorových útvarů je potřeba zvládnout objem a povrch krychle a kvádru.

PřesouváníJednotky obsahu
Psaná odpověďJednotky obsahu
PřesouváníObsah na mřížce: mix
Psaná odpověďObvod trojúhelníku
Psaná odpověďObsah trojúhelníku
RozhodovačkaObsah na mřížce: trojúhelník, rovnoběžník, lichoběžník
Psaná odpověďObsah na mřížce: trojúhelník, rovnoběžník, lichoběžník
RozhodovačkaObsah lichoběžníku (na mřížce)
RozhodovačkaObsah: trojúhelník, rovnoběžník, lichoběžník
Psaná odpověďObvod: čtverec, obdélník, trojúhelník
Psaná odpověďObsah: trojúhelník, rovnoběžník, lichoběžník
Slovní úlohyObsah, obvod: mix
RozhodovačkaObjem krychle a kvádru
Psaná odpověďObjem krychle a kvádru
Psaná odpověďObjem krychle a kvádru
MřížkovanáObsah Úlohy

8. Úhly

Práce s úhly se vyskytuje jako dílčí krok v mnoha geometrikých úlohách (např. v konstrukčních).

RozhodovačkaPoznávání úhlů
RozhodovačkaÚhly v trojúhelníku
Krok po krokuÚhly v trojúhelníku
PřesouváníÚhly v trojúhelníku
Psaná odpověďÚhly v trojúhelníku
RozhodovačkaÚhly ve čtyřúhelníku
Psaná odpověďÚhly ve čtyřúhelníku
Psaná odpověďÚhly: mix
Slovní úlohySlovní úlohy s úhly

9. Konstrukční úlohy

Konstrukční úlohy je samozřejmě klíčové trénovat i na papíře. Před samotným rýsováním se ale vyplatí projít si pojmy a postupy ve cvičeních na počítači.

MřížkovanáTrojúhelníky Úlohy
MřížkovanáČtyřúhelníky Úlohy
Krok po krokuKonstrukce trojúhelníků: rovnoramenné a rovnostranné trojúhelníky
Krok po krokuKonstrukce trojúhelníků: věty sss, sus, usu, Ssu
Krok po krokuKonstrukce trojúhelníků: těžnice, výšky, vepsaná a opsaná kružnice
Krok po krokuKonstrukční úlohy: čtyřúhelníky
Krok po krokuKonstrukční úlohy průřezově

10. Nestandardní úlohy

Součástí specifikace zkoušek jsou i „nestandardní aplikační úlohy“, které nelze řešit naučeným postupem a vyžadují použití úsudku a (prostorové) představivosti. Tento typ úloh samozřejmě nelze nadrilovat. V Umíme máme ale řadu pestrých úloh, které fungují jako dobrá příprava.

Psaná odpověďPočítání s nápadem
PřesouváníObrázkové rovnice
PřesouváníMagické čtverce
Psaná odpověďPočty vrcholů, stěn, hran
Pexeso3D objekty z různých pohledů
PřesouváníSíť krychle
PřesouváníSíť krychle
PexesoSítě těles
RozhodovačkaSítě těles
PřesouváníČíselné křížovky
PřesouváníČíselné křížovky
PřesouváníDoplň operaci
PřesouváníPavučiny s násobením
NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence