Převod desetinného čísla na zlomek

Desetinné číslo roznásobíme pomocí mocniny desítky tak, abychom se „zbavili“ desetinné čárky. Následně zlomek vykrátíme (největším společným dělitelem), abychom dostali zlomek v základním tvaru. Příklady:

  • 1{,}5 = 1{,}5\cdot \frac{10}{10} = \frac{1{,}5\cdot 10}{10} = \frac{15}{10} = \frac{3}{2}

  • 1{,}25 = 1{,}25 \cdot \frac{100}{100} = \frac{1{,}25\cdot 100}{100} = \frac{125}{100} = \frac{5}{4}

Počítání nám může usnadnit, když si zapamatujeme některé užitečné převody, s jejichž pomocí vhodné úvahy vyřešit i další příklady:

  • 0{,}01 = \frac{1}{100}

  • 0{,}1 = \frac{1}{10}

  • 0{,}2 = \frac{1}{5}

  • 0{,}25 = \frac{1}{4}

  • 0{,}333\ldots = \frac{1}{3}

  • 0{,}5 = \frac{1}{2}

Převod zlomku na desetinné číslo

Význam zlomku je prostě podíl čitatele a jmenovatele. Zlomek tedy vyjádříme jako desetinné číslo prostě tak, že podělíme čitatele jmenovatelem (může se hodit postup pro „dělení pod sebou“). Příklady:

  • \frac{3}{4} = 3:4 = 0{,}75

  • \frac{6}{5} = 6:5 = 1{,}2

  • \frac{3}{20} = 3:20 = 0{,}15

Rozhodovačka

Rychlé procvičování výběrem ze dvou možností.


Zlomky a desetinná čísla   


Pexeso

Hledání dvojic, které k sobě patří.


Zlomky a desetinná čísla   


Krok po kroku

V tomto cvičení doplňujete jednotlivé kroky v rozsáhlejším postupu – například jednotlivé kroky v úpravě výrazů nebo při řešení rovnic. Cvičení je dobrou rozcvičkou na samostatné řešení kompletních příkladů.


Zlomky a desetinná čísla   
Převod zlomku na desetinné číslo
Převod desetinného čísla na zlomek


Počítání

Cvičení, ve kterém píšete odpověď na klávesnici.


Zlomky a desetinná čísla   


NAPIŠTE NÁM

Čeho se zpráva týká?

Obsah Ovládání Přihlášení Licence Různé

Text zprávy

E-mailová adresa


Prosím nezasílejte dotazy na prozrazení řešení úloh či na vysvětlení postupu.

Odeslat