Grafy exponenciálních a logaritmických funkcí

Přejít ke cvičením na toto téma »

Grafy exponenciálních funkcí

Grafem exponenciální funkce je křivka jménem exponenciála. Na obrázku jsou grafy exponenciálních funkcí se základy 2 a e = 2{,}7 182 818 284\ldots. Vidíme také, že grafy funkcí e^x a e^{-x} jsou spolu souměrné podle osy y.

Efekt přičtení konstanty k exponenciální funkci
Efekt přičtení konstanty k exponentu
Efekt vynásobení exponenciální funkce konstantou
Efekt vynásobení exponentu konstantou

Grafy logaritmických funkcí

Logaritmická funkce je inverzní k exponenciální funkci o stejném základu. Grafy dvou navzájem inverzních funkcí jsou osově souměrné podle osy prvního kvadrantu (tj. přímky splňující x=y).

Na obrázku vidíme grafy logaritmických funkcí s různými základy 2, e, 10.

Značení některých význačných logaritmických funkcí:

funkce popis další možná značení
\log_a x obecně logaritmus x o základu a pro nějaké a >0, a\neq 1
\ln x přirozený logaritmus x, tj. logaritmus x o základu e v angl. textech někdy \log x
\log x dekadický logaritmus x, tj. logaritmus x o základu 10 \log_{10}x
\log_2 x binární logaritmus x, tj. logaritmus x o základu 2 někdy se objevuje \mathrm{lb}\;x
Efekt přičtení konstanty k logaritmické funkci
Efekt přičtení konstanty k argumentu logaritmické funkce
Efekt vynásobení logaritmické funkce konstantou
Efekt vynásobení argumentu logaritmické funkce konstantou
NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence