Umíme matiku
Přejít na cvičení:
Rozhodovačka
Přejít na téma:
Osová souměrnost
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
EH6
Sdílet
Zobrazit nastavení cvičení

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

EH6
umime.to/EH6

Nastavení cvičení

Pozor, nastavení je platné pouze pro toto cvičení a předmět.

umime.to/EH6

Osová souměrnost

Osová souměrnost je dána přímkou o a přiřazuje každému bodu X mimo osu takový bod X', že přímka o je osou úsečky XX'. Jinými slovy: obraz má od osy stejnou vzdálenost jako původní bod a spojnice bodů je kolmá na osu. Osová souměrnost zachovává vzdálenosti i úhly, jde tedy o druh shodnosti.

Příklady

Modré a oranžové útvary jsou vzájemně osově souměrné podle osy o:

Pro lepší pochopení může být užitečné porovnat osovou a středovou souměrnost.

Osově souměrný útvar

Útvar označujeme za osově souměrný, pokud je v nějaké osové souměrnosti obrazem sebe sama. Osu této souměrnosti pak nazýváme osou útvaru. Obrázek uvádí příklady útvarů osově souměrných (zelené, s vyznačenými osami souměrnosti) i těch nesouměrných (červené):

Další příklady:

  • Úsečka je osově souměrná a má v rovině jedinou osu souměrnosti (kolmici v jejím středu).
  • Rovnoramenný trojúhelník je osově souměrný.
  • Trojúhelník, který není rovnoramenný, není osově souměrný.
  • Všechny pravidelné mnohoúhelníky jsou osově souměrné. Počet os souměrnosti je roven počtu vrcholů mnohoúhelníku.
  • Kruh je osově souměrný a má nekonečně mnoho os souměrnosti.

Komiks pro zpestření

Zavřít

Osová souměrnost (lehké)

NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence