Přejít na cvičení:
Krok po kroku
Přejít na téma:
Rovnice s lomenými výrazy
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
FGX
Sdílet

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

FGX
umime.to/FGX

umime.to/FGX

Rovnice s lomenými výrazy

Rovnice s lomenými výrazy řešíme stejnými postupy jako základní rovnice.

Užitečným (avšak ne vždy nezbytným) prvním krokem bývá roznásobení obou stran rovnice společným násobkem všech jmenovatelů lomených výrazů.

Podmínky řešitelnosti

Aby lomený výraz dával smysl, nesmí být jmenovatel roven nule. Po vyřešení rovnice tedy musíme zkontrolovat, že výsledné řešení tuto podmínku splňuje pro všechny jmenovatele v rovnici.

Řešený příklad

Zadání: \frac{-1}{2} = \frac{x+1}{1-x}
Jmenovatelé jsou 2 a 1-x, společný násobek je 2(1-x). Roznásobíme tedy rovnici 2(1-x). \frac{-1}{2}\cdot 2(1-x) = \frac{x+1}{1-x} \cdot 2(1-x)
Pokrátíme obě strany. (-1)\cdot (1-x) = (x+1)\cdot 2
Roznásobíme obě strany. x-1 = 2x +2
Převedeme x na jednu stranu, konstanty na druhou. x = -3
Zavřít

Rovnice s lomenými výrazy (těžké)

Vyřešeno:



NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence