Přejít na cvičení:
Rozhodovačka
Přejít na téma:
Grafy logaritmických funkcí
Zobrazit na celou obrazovku
Procvičujte neomezeně

Váš denní počet odpovědí je omezen. Pro navýšení limitu či přístup do svého účtu s licencí se přihlaste.

Přihlásit se
Zobrazit shrnutí tématu
G1X
Sdílet
Zobrazit nastavení cvičení

QR kód

QR kód lze naskenovat např. mobilním telefonem a tak se dostat přímo k danému cvičení nebo sadě příkladů.

Kód / krátká adresa

Tříznakový kód lze napsat do vyhledávacího řádku, také je součástí zkrácené adresy.

Zkopírujte kliknutím.

G1X
umime.to/G1X

Nastavení cvičení

Pozor, nastavení je platné pouze pro toto cvičení a předmět.

umime.to/G1X

Grafy logaritmických funkcí

Logaritmická funkce je inverzní k exponenciální funkci o stejném základu. Grafy dvou navzájem inverzních funkcí jsou osově souměrné podle osy prvního kvadrantu (tj. přímky splňující x=y).

Graf každé logaritmické funkce tvaru y=\log_a x prochází bodem [1,0], protože pro libovolnou konstantu a platí: \log_a 1=0. Na obrázku vidíme grafy logaritmických funkcí s různými základy 2, e, 10.

Značení některých význačných logaritmických funkcí:

funkce popis další možná značení
\log_a x obecně logaritmus x o základu a pro nějaké a >0, a\neq 1
\ln x přirozený logaritmus x, tj. logaritmus x o základu e v angl. textech někdy \log x
\log x dekadický logaritmus x, tj. logaritmus x o základu 10 \log_{10}x
\log_2 x binární logaritmus x, tj. logaritmus x o základu 2 někdy se objevuje \mathrm{lb}\;x
Efekt přičtení konstanty k logaritmické funkci
Efekt přičtení konstanty k argumentu logaritmické funkce
Efekt vynásobení logaritmické funkce konstantou
Efekt vynásobení argumentu logaritmické funkce konstantou
Zavřít

Grafy logaritmických funkcí (těžké)

NAPIŠTE NÁM

Děkujeme za vaši zprávu, byla úspěšně odeslána.

Napište nám

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence