Lomený výraz má tvar zlomku, v jehož jmenovateli je mnohočlen (výraz s proměnnou). Příkladem lomeného výrazu je \frac{x+2}{x^2-1}. S lomenými výrazy počítáme podobně jako se zlomky.

U lomených výrazů je potřeba brát v potaz podmínky, za kterých má smysl. Lomený výraz má smysl pro všechny hodnoty proměnných, pro něž je výraz ve jmenovateli různý od nuly. Příklady:

  • Výraz \frac{x+5}{x-3} má smysl pro x \neq 3.
  • Výraz \frac{x^3}{x^2-1} má smysl pro x \in \mathbb{R} \setminus \{-1, 1\}, protože x^2-1 = 0 pro hodnoty -1 a 1.
  • Výraz \frac{x^3}{x^2+1} má smysl pro všechna reálná čísla, protože x^2+1 je vždy větší jak nula.


Vysvětlení mi pomohlo   Vysvětlení mi nepomohlo
NAPIŠTE NÁM

Nevíte si rady?

Nejprve se prosím podívejte na časté dotazy:

Časté dotazy Návody pro rodiče Návody pro učitele

Čeho se zpráva týká?

Vzkaz Obsah Ovládání Přihlášení Licence